KSV 6HE

Servo Amplifier for Brushless Motors

KSV 1,5/5 compact design to KSV 12/30 compact design

Compact design, three-phase power connection Built-in RFI-filter

Operating Instructions 221058E, V 1.5a 09/01

These operating instructions apply to

- KSV 6HE KSV 1,5/5 compact design to KSV 12/30 compact design servo amplifiers (compact design) (odd numbers) with integrated power supply for three-phase power connection and built-in RFI-filter
- 038100050Z, 038100070Z, 038100090Z and 038100130Z mains transformers
- accessories

GEORGII KOBOLD AUGUST HEINE GmbH & Co Fasanenweg 6 – 8 D-70771 Leinfelden-Echterdingen Federal Republic of Germany Tel. +49 (0) 711 7 59 03-0 Fax +49 (0) 711 7 59 03-53

E-mail service@georgii-kobold.de www.georgii-kobold.de

Versions	of the	document

20.11.96	V 1.1, Pol	German V 1.4 translated into English
11.03.97	V 1.4, Pol	revised, adapted to Printer 5 Si/MX
28.05.98	V 1.4e, StP	English terms corrected (Georgii Kobold dictionary) revised and enhanced following German V 1.4d: addi- tional data speed monitor; cable length motor choke corrected; text, figure 11 in section 11.3 changed; new version of type code; integration of figure files; adapted to WP 8, PS-Printer; prepared for .pdf conversion revised and enhanced following German V 1.4e (new versions of add-on modules Z1, Z2; revision of sections 11,12): Section 6.2, Fig. 10, 11 and Table "Documenta- tion of settings" revised
13.01.00	V 1.5, MH	add-on modules Z1 and Z2 revised, figures new; add-on module Z4 new; type code updated; table "Documenta- tion of the settings" revised; fig. 9 new; corrections; doc- ument styles similar to German version V 1.5
24.09.01	V 1.5a, MH	OEM preparation; corrections similar to German version V 1.5a

O:\!pdf\Vorlagen\GK\221058E_15a.wpd

Copyright by GEORGII KOBOLD AUGUST HEINE GmbH & Co, D-70771 Leinfelden-Echterdingen, Germany

All rights reserved, including those of translation. No part of these operating instructions may be copied, reproduced, stored or processed in an information system, or transmitted in any other form, without prior written permission by GEORGII KOBOLD AUGUST HEINE GmbH & Co.

These operating instructions have been prepared with care. However, GEORGII KOBOLD AUGUST HEINE GmbH & Co can accept no liability for any errors in these operating instructions or possible consequences. Neither can any liability be accepted for direct or indirect damage resulting from abuse of the device.

The relevant regulations concerning safety technology and electromagnetic compatibility must be complied with when using the device.

Subject to alteration.

Contents

Chapter 1: General information

1	Prelin	ninary remarks
	1.1	About this description
	1.2	Servo Drive Packages
2	Safet	y instructions
	2.1	Type of instruction
	2.2	Technical staff
	2.3	Use for the intended purpose 12
	2.4	Protective earthing
	2.5	Hazard warnings
	2.6	Warning
	2.7	CE marking
	2.8	Preconditions for commissioning
	2.9	Working with the amplifier 14

Chapter 2: Servo amplifier

3	Tech	nical spe	cifications		15
	3.1	Туре со	de		15
	3.2	Technica	al specifica	tions	15
	3.3	Details .			16
		3.3.1	Design .		16
		3.3.2	Installatio	on in the control cabinet	18
4	Conr	nection: A	ssignmen	t of connectors and details	19
	4.1	Connect	or assignm	nents	19
		4.1.1	Motor and	d operating voltage (Combicon connector X1)	19
		4.1.2	Mains an	d operating voltage (Combicon connector X5)	19
		4.1.3	Control s	ignals "Steuersignale" (SUB-D fem. connector X2, 15-pin)
					20
			4.1.3.1	Version without add-on module	20
			4.1.3.2	Version with Z1 add-on module	21
			4.1.3.3	Version with Z2 add-on module	21
			4.1.3.4	Version with Z4 add-on module	22
		4.1.4	Position s	sensor "Lagegeber" (SUB-D female connector X3, 9-pin)	
					22

	4.1.5	Encoder signals "Gebersignale" (SUB-D male connector X4, 9-pir	1)
42	Details a	hout the signals	23
7.2	4 2 1	Auxiliary voltage outputs	23
	422	Setpoint through differential amplifier	23
	423	Switching inputs and switching outputs	24
		4 2 3 1 Properties of the switching inputs and outputs	24
		4.2.3.2 Switching input "Controller enable"	25
		4.2.3.3 Switching input "Reset fault"	25
		4.2.3.4 Switching output "Fault" or "Ready"	26
		4.2.3.5 Switching output "Overload"	26
		4.2.3.6 Switching output "Motor standstill" or "Power circuit rea	adv"
			27
	4.2.4	Analog outputs	28
	4.2.5	Encoder signals, holding function	28
	4.2.6	Position sensor	28
	4.2.7	Motor temperature sensor	29
	4.2.8	Sensor fault detection	29
	4.2.9	Block protection	29
	4.2.10	Fault memory	30
4.3	Interface	edetails	32
	4.3.1	Connector X2, control signals, switching towards zero	32
	4.3.2	Connector X2, control signals, PLC-compatible	33
	4.3.3	Connector X4, encoder signals, 5-volt version	34
	4.3.4	Connector X4, encoder signals, 24-volt version	35
4.4	Connect	ion directions	36
	4.4.1	Installation on the mounting plate	36
	4.4.2	Potential equilization cables	38
	4.4.3	Mains connection	38
	4.4.4	Connection of the built-in power supply	39
	4.4.5	Motor connection, general information	39
	4.4.6	Shield connection motor cable	40
	4.4.7	Motor choke	41
	4.4.8	Shield connection of the external shunt resistor cable	41
	4.4.9	Connection, shielding and laying of the control leads	41
	4.4.10	Setpoint connection	42
	4.4.11	Connection of the encoder signals	42
	4.4.12	Connecting the position sensor (resolver)	43
	4.4.13	Connection of the motor temperature sensor	43

5	Adjus	tment and display elements	44
	5.1	Trim potentiometers	44
	5.2	Current limiting and "Current" rotary switch	44
	5.3	LEDs	46
6	Modu	lar fittings and expansions	47
	6.1	Customer module Kx	47
	6.2	Add-on modules Zx	47
		6.2.1 Add-on module Z1	48
		6.2.2 Add-on module Z2	49
		6.2.3 Add-on module Z4	50
		6.2.4 Further add-on modules	52
	6.3	Polarity module Px	52
	6.4	Encoder modules G1 to G4	52
		6.4.1 Pulse setting	53
		6.4.2 Index pulse adjustment	53
	6.5	Function module Fx	54
		6.5.1 Hold function F1	54
		6.5.2 Field weakening mode F2	55
	6.6	Option E1 external supply of control circuit	56
7	Shutti	ing down the motor and safety shutdown	57
	7.1	Shutting down options	57
	7.2	Estimating the braking distance	58
	7.3	Emergency stop and safety regulations	58
8	Comn	nissioning	59
	8.1	Precautions	59
	8.2	Switching on for the first time	59
	8.3	Setting the speed	60
	8.4	Setting the feedback: normal case	60
	8.5	Setting the feedback: critical applications	61
	8.6	Setting the feedback with Z4 add-on module	61
	8.7	Setting the current limit	62
	8.8	Setting the offset	62
	8.9	Setting the holding control loop amplification	63

Chapter 3: Power supply and accessories

9	Power supply of the servo amplifiers		64
	9.1	Load factor	64

	9.2	Power su	ıpply	64
		9.2.1	Design	64
		9.2.2	Shunt regulator	65
		9.2.3	LEDs	65
		9.2.4	Technical specifications of the power supply	65
		9.2.5	External shunt resistor	66
	9.3	Mains tra	Insformers	67
		9.3.1	General information	67
		9.3.2	Connections	67
		9.3.3	Technical specifications of the mains transformers	68
10	Acces	ssories .		69
	10.1	Available	accessories and order numbers	69
	10.2	Descripti	on of accessories	69
		10.2.1	Connector sets and	69
		10.2.2	Motor connection cables and	69
		10.2.3	Resolver/Encoder connection cable	70
		10.2.4	Motor chokes and	71

Chapter 4: Notes for specialists

11	Modifications to the servo amplifier 73			73
	11.1	Modifying	g the controller circuitry	73
		11.1.1	Speed control range	73
		11.1.2	Number of motor pole pairs	74
		11.1.3	Current control instead of speed control	75
		11.1.4	Changing the direction of rotation	76
	11.2	Modificat	tions to the feedback	77
		11.2.1	Reset time	77
		11.2.2	D circuit	77
	11.3	Modificat	tions to the Z1, Z2, and Z4 add-on modules	77
		11.3.1	Location of the solder bridges	77
		11.3.2	Former versions of modules Z1 and Z2	79
		11.3.3	"Power circuit ready" signal instead of "Motor standstill" signal	79
		11.3.4	Switching off the peak current rise	80
		11.3.5	Switching off active braking at controller disable	80
		11.3.6	Activating the ramp function	80
		11.3.7	Adjusting and limiting the I component of the speed controller	80
	11.4	Modificat	tions to the polarity module	81
		11.4.1	"Ready" signal instead of "Fault" signal	81

12	Documentation of the settings	 32
	J-	-

Appendix

Appendix A	EC Declaration of Conformity	83
Appendix B	Terms of warranty	84
Appendix C	Table of faults	84

Figures

Fig. 1: Mounting dimensions	17
Fig. 2: Control signals, switching towards zero (interface details)	32
Fig. 3: Control signals, PLC-compatible (interface details)	33
Fig. 4: Encoder signals, 5-volt version (interface details)	34
Fig. 5: Encoder signals, 24-volt version (interface details)	35
Fig. 6: Connection directions	37
Fig. 7: Setpoint potentiometer connection for commissioning	60
Fig. 8: Motor chokes	72
Fig. 9: Location of the jumpers on the board	75
Fig. 10: Location of the jumpers on the customer module	76
Fig. 11: Solder bridges on the Z1 module	78
Fig. 12: Solder bridges on the Z2 module	78
Fig. 13: Solder bridges on the Z4 module	79
Fig. 14: Solder bridges on the P1 and P2 modules	81

Chapter 1: General information

1 Preliminary remarks

1.1 About this description

These operating instructions explain the characteristics, connection, installation and setting up of

- the KSV 6HE servo amplifiers in the version with built-in power supply and built-in RFI-filter,
- the mains transformers for the connection to 3 × 230 V three-phase current,
- accessories,
- and provides notes for specialists.

The operation instructions are divided up into 4 chapters and 12 sections. After the safety instructions and the technical specifications, the connection of the servo amplifier is described. In some cases you will require details which are not explained more fully until later. It is therefore important that you should read the sections important for your application in a sequence commensurate with your previous knowledge.

The chapter "Notes for the specialist" describes changes which can be carried out on site by specially qualified electronics experts at their own risk, providing that all precautions have been taken.

1.2 KSV 6HE Servo Drive Packages

KSV 6HE servo drive packages in 19" design consist of:

- the brushless motor with coupled resolver as a speed and position sensor,
- the analog servo amplifier with built-in power supply
- the mains transformer.

The compact series described here comprises

- amplifiers for 5 different currents (1.5 $A_{\rm rms}$ to 12 $A_{\rm rms}),$
- amplifiers with different specifications (optional)
 - with built-in power supply,
- mains transformers to feed the amplifiers.

We evaluate the servo drive matched to your application and

- deliver the matching servo motor.
 - They have separate operating instructions and terminal connection diagrams.

As well as the compact series there is a series in 19" plug-in module design for installation into 19" rack systems and a matching power supply (KSV 1,5/5 to KSV 12/30 amplifiers) with separate operating instructions.

Safety instructions 2

2.1 Type of instruction

It is essential that you should note the warnings and instructions in the margin:

- Danger for life and limb through electrical shock or motion of the drive system.
- Caution. Disregard can lead to personal injury or death or damage of property.
- Prohibition. Disregard is a violation of safety regulations or statutory provisions.
- Power off. Disconnect the device from the mains and wait at least 1 minute until the DC-bus capacitors have discharged before carrying out the measures described.
- The CE marking presumes compliance with the EMC limits in accordance with EN 55011, A and B (emissions) and EN 50082 1 and 2 (immunity). The specifications marked with this symbol must be complied with. Otherwise the installation in which the amplifier is being run must be checked for compliance with the EMC limits at the discretion of the customer.

Other instructions given in the margin:

- Check. First check these positions if the drive system does not work as required or if you cannot proceed working with the device for other reasons.
- Tip. Useful hint.

2.2 **Technical staff**

The servo amplifiers and the power supplies work with voltages which are dangerous in case of contact. Touching live parts can cause serious injury or death.

Only trained technical staff with special knowledge in the fields of

- automation,
- dealing with dangerous voltages,

standards and regulations such as

- EMC directive (89/336 EEC),
- low voltage directive (73/23 EEC),
- machinery directive (89/392 EEC),

11

Danger

Caution

Do not

Power off

wait > 1 min

CE/EMC

Danger

CE/EMC

- VDE regulations (such as DIN VDE 0100, DIN VDE 0113 <EN 60204>, DIN VDE 0160 <EN 50178>),
- safety rules

may therefore

- install,
- commission,
- maintain and
- service

these units.

They must read these operating instructions carefully beforehand, and always follow the safety instructions while working.

2.3 Use for the intended purpose

The servo amplifiers have been developed, manufactured, tested and documented in accordance with the relevant standards. If used for the intended purpose, the devices do not cause any danger to persons or property. Use for the intended purpose requires that the device should be used only in the manner described here and that the safety regulations mentioned are adhered to.

When using the devices, use for the intended purpose includes compliance with the relevant regulations with respect to safety (machinery directive) and electromagnetic compatibility (EMC directive).

Dispose of the apparatus at the end of its useful service life in accordance with the current regulations.

can accept no liability for direct or indirect damage resulting from abuse of the devices.

2.4 Protective earthing

On account of leakage current from the built-in RFI-filter, the protective earth conductor, in accordance with DIN VDE 0160, must

- either be run double to the amplifier or
- have a cable cross-section of at least 10 mm² Cu.

Operation using an earth-leakage circuit breaker is not possible

- due to the leakage current of the RFI-filter and
- since in case of earth leakage a part of the direct current flows in the protective earth conductor.

2.5 Hazard warnings

Due to their design and connection system, the servo amplifiers

- may only be operated in closed housings (control cabinet);
- may only be operated with a fixed connection to the mains.

Do not introduce any objects (screwdrivers, wires) into the interior of the device through the ventilation holes.

Before you remove a device from the chassis and before you disconnect or reconnect a connector

Caution

switch off mains voltage.

The charging capacitor of the power supply retains the voltage even after it has been switched off. Before working at or in the device

wait at least one minute after switching off.

Electronic devices are generally not fail-safe. The user must make sure

- · that when a device breaks down
 - the drive is switched to a safe state.

2.6 Warning

Caution

The temperature of the heat sink located on the left-hand side may, if the device is under full load,

reach as much as 80 °C.

CE marking 2.7

The KSV 6HE servo amplifiers meet the requirements of

- the EMC directive (89/336 EEC) and
- the low voltage directive (73/23 EEC).

They thus conform to the currently valid EU regulations and bear the CE marking.

The CE marking only applies

 when all installation and connection requirements of these operating instructions have been exactly complied with, and

• when the requirements in the notes next to the CE/EMC marks have been met.

If this is not possible, then

 you must have the installation in which the amplifiers are being operated tested at your own discretion for compliance with the EMC limits.

2.8 Preconditions for commissioning

In addition to the low voltage and EMC directives applicable to the servo amplifiers, the

• machinery directive (89/392 EEC) applies to machines.

The machinery directive (89/392 EEC) applies to the final product, that is, the machine containing the servo amplifier. The machine manufacturer must comply with the machinery directive (89/392 EEC).

Commissioning is forbidden until the requirements of the machinery directive have been met.

2.9 Working with the amplifier

To replace modules or to carry out matching or other work,

- first disconnect the device from the mains,
- · pull off the connectors, and
- remove the right-hand panel with the power supply after loosening the 4 cross-recessed screws.

Danger

Never operate the device when it is open!

Do not

Chapter 2: Servo amplifier

3 Technical specifications

3.1 Type code

The type code clearly identifies a servo amplifier equipped in a certain way. The type code also applies for devices of the 19" series.

For further details on the modular expansion options, please refer to section 6, page 47.

3.2 Technical specifications

Servo amplifier		KSV 1,5/5 compact design	KSV 3/10 compact design	KSV 6/20 compact design	KSV 9/30 compact design	KSV 12/3 0 com- pact de- sign
Mains connection via is	olat. transformer	3 × 120 230 V AC, (+10%)				
Bus voltage				320 V DC		
Minimum bus voltage				160 V DC		
Maximum permissible t	ous voltage			420 V DC		
Maximum continuous c	urrent (rms value)	1.5 A	3 A	6 A	9 A	12 A
Maximum peak current	(crest value)	5 A	10 A	20 A	30 A	30 A
Current limiting adjusta	ble from to	0.41.5 A	0.83 A	1.56 A	2.39 A	312 A
Load factor (in conjunct transformer) ¹	ion with mains	4	8	16	24	32
Integration time of the lapeak current	² t circuit at max.			approx. 2 s		
Setpoint value			1	⊧10 V at 20 k (2	
Operating range of speed trimmer		1:7				
	±3500 r.p.m.	2 V /1000 r.p.m.				
Output speed monitor $(P_{1}, 10 k_{0})$ at aposed	±7000 r.p.m.	1 V /1000 r.p.m.				
range $(R_A = 10 \text{ k}\Omega)$ at speed	±10,500 r.p.m.	0.67 V /1000 r.p.m.				
_	±14,000 r.p.m.		0.5	5 V /1000 r.p.	m.	
Output current monitor	(RA = 10 kΩ)	±10 V for maximum pulse current				
Switching frequency		16 kHz				
Frequency of current rip	ople	32 kHz				
Auxiliary voltage output	S	+15 V and -15 V, ±10%				
Load capacity of auxilia	iry voltages	10 mA each (via 125 Ω PTC)				
For option E1: external control circuit supply		24 V DC, -15+20%, approx. 400 mA at 24 V				
Climatic category (DIN EN 50178) opera- tion / storage / transport		3K3 / 1K4 / 2K3				
Permissible ambient temperature in con- tinuous operation		50 °C				
Wiring to Combicon	Recommended cross-section	1.5 mm ²	1.5 mm ²	1.5 mm ²	2.5 mm ²	2.5 mm ²
connectors	Minimum cross- section	0.75 mm ²	0.75 mm ²	1.0 mm ²	1.5 mm ²	1.5 mm²

¹ The load factor given is for calculating the number of amplifiers that can be operated by one common power supply. For further details see Section 9.1, page 64.

Servo amplifier	KSV 1,5/5 compact design	KSV 3/10 compact design	KSV 6/20 compact design	KSV 9/30 compact design	KSV 12/3 0 com- pact de- sign
Width	85 mm		95 mm		
Height (without/with mounting straps)		240 / 275 mm		270 / 305 mm	
Depth (without connectors)	200 mm		200 mm		
Weight	3.5 kg		4.0 kg		

3.3 Details

3.3.1 Design

KSV 6HE servo amplifiers are manufactured in a compact design for screwing onto a mounting plate. The amplifier is permanently installed in the housing. Slots for the modules described below are provided. Figure 1 shows the mounting dimensions.

All connections, trim potentiometers, and LEDs are located at the front panel:

- motor and operating voltage input: 7-pin Combicon connector,
- mains connection, operating voltage output, shunt resistor: 10-pin Combicon connector,
- control signals: 15-pin SUB-D female connector,
- output for encoder signals: 15-pin SUB-D male connector
 - present only if encoder module is mounted,
- position sensor (resolver): 9-pin SUB-D female connector.

The devices for continuous currents up to 6 A

• work with natural convection.

The devices for continuous currents of 9 A and higher

- have built-in fans, with internal voltage supply,
- have somewhat larger dimensions than the devices up to 6 A, see table "Technical specifications" and fig. 1.

The power supply is located in the right-hand side panel. It can be removed together with the side panel. This is necessary if you wish to work on the amplifier.

	· · · · · · · · · · · · · · · · · · ·			
order number servo amplifier	В	H ₁	H ₂	H_3
KSV 1,5/5 compact design / /	85	275	260	255
KSV 9/30 compact design /	95	305	290	270

Fig. 1: Mounting dimensions

Caution

3.3.2 Installation in the control cabinet

For fixing in the control cabinet, the amplifier provides

- a strap with an opening for locating it on an M-4 bolt at the top of the rear panel, and
- another strap with two slots for additional attachment at the bottom.

For notes on installation on a bare metal mounting plate, see section 4.4.1 (page 36).

The device is designed for pollution degree 2 in accordance with EN 50178:1994. Please make sure that it is only exposed to

- non-conductive dirt.
 - If necessary, provide for a suitable filter in the ventilation of the control cabinet.

The KSV 6HE servo amplifiers KSV 1,5/5 compact design to KSV 6/20 compact design are convection cooled. To ensure that the air can flow through the housing and the heat sink,

- leave a gap of at least 80 mm above and below the devices, and
- leave a lateral gap of at least 20 mm.

The KSV 6HE servo amplifiers KSV 9/30 compact design and KSV 12/30 compact design are equipped with one or two fans, respectively. To ensure that the air can flow undisturbed through the housing and the heat sink,

- leave a gap of at least 80 mm above and below the devices.
- Several such devices can be mounted directly beside each other (without a lateral gap between the devices). A few millimeters of space facilitate installation and subsequent removal and installation of individual devices.

4 Connection: Assignment of connectors and details

4.1 Connector assignments

For details concerning connections and the optional modules, please refer to the later sections.

4.1.1 Motor and operating voltage (Combicon connector X1)

Marking	Assignment
Motor U	Motor connection U
Motor V	Motor connection V
Motor W	Motor connection W
PE	PE for motor cable
PE	PE from power supply
-U _B	Negative pole of bus voltage from power supply
+U _B	Positive pole of bus voltage from power supply

4.1.2 Mains and operating voltage (Combicon connector X5)

Marking	Assignment
R _{ext}	
R _{int}	Either connect external shunt resistor between R_{ext} and $+R_B$ or install jumper from R_{int} to $+R_B$. Jumper is factory-set.
+R _B	
L1	Phase 1 secondary side transformer
L2	Phase 2 secondary side transformer
L3	Phase 3 secondary side transformer
PE	Power safety ground
PE	PE to amplifier
U _B	Negative pole of bus voltage to amplifier
+U _B	Positive pole of bus voltage to amplifier

4.1.3 Control signals "Steuersignale" (SUB-D fem. connector X2, 15-pin)

4.1.3.1 Version without add-on module

Pin	Assignment
1	0 Volt
2	Output auxiliary voltage +15 V
3	Output auxiliary voltage –15 V
4	Input setpoint (E+)
5	Input setpoint (E–)
6	Switching input "Controller enable"
7	not assigned
8	not assigned
9	Switching input "Reset fault"
10	Input +24 V for modules P1, P2 and/or E1 (only if fitted)
11	not assigned
12	Switching output "Fault" (or "Ready")
13	Analog output "Speed monitor"
14	Switching output "Overload"
15	Analog output "Current monitor"
Housing	Connect cable shield to the housing of the SUB-D connector

4.1.3.2 Version with Z1 add-on module

Pin	Assignment
1	0 Volt
2	Output auxiliary voltage +15 V
3	Output auxiliary voltage –15 V
4	Input setpoint (E+)
5	Input setpoint (E–)
6	Switching input "Controller enable"
7	Switching input "Limit switch 1"
8	Switching input "Limit switch 2"
9	Switching input "Reset fault"
10	Input +24 V for modules P1, P2 and/or E1 (only if fitted)
11	Switching output "Motor standstill" (or "Power circuit ready")
12	Switching output "Fault" (or "Ready")
13	Analog output "Speed monitor"
14	Switching output "Overload"
15	Analog output "Current monitor"
Housing	Connect cable shield to the housing of the SUB-D connector

4.1.3.3 Version with Z2 add-on module

Pin	Assignment
1	0 Volt
2	Output auxiliary voltage +15 V
3	Output auxiliary voltage –15 V
4	Input setpoint (E+)
5	Input setpoint (E–)
6	Switching input "Controller enable"
7	Switching input "Setpoint reversing"
8	Analog input "Current reduction"
9	Switching input "Reset fault"
10	Input +24 V for modules P1, P2 and/or E1 (only if fitted)
11	Switching output "Motor standstill" (or "Power circuit ready")
12	Switching output "Fault" (or "Ready")
13	Analog output "Speed monitor"
14	Switching output "Overload"
15	Analog output "Current monitor"
Housing	Connect cable shield to the housing of the SUB-D connector

4.1.3.4 Version with Z4 add-on module

Pin	Assignment
1	0 Volt
2	Output auxiliary voltage +15 V
3	Output auxiliary voltage –15 V
4	Input setpoint (E+)
5	Input setpoint (E–)
6	Switching input "Controller enable"
7	Switching input "Limit switch 1"
8	Switching input "Limit switch 2"
9	Switching input "Reset fault"
10	Input +24 V for modules P1, P2 and/or E1 (only if fitted)
11	Switching output "Power circuit ready"
12	Switching output "Fault" (or "Ready")
13	Analog output "Speed monitor"
14	Switching output "Overload"
15	Analog output "Current monitor"
Housing	Connect cable shield to the housing of the SUB-D connector

4.1.4 Position sensor "Lagegeber" (SUB-D female connector X3, 9-pin)

Pin	Assignment
1	0 volt (connect only in special cases)
2	0 volt for motor temperature sensor
3	Sine (S 2)
4	Cosine (S 3)
5	Excitation (R 2)
6	Motor temperature sensor (if there is no sensor, connect to 2)
7	Sine (S 4)
8	Cosine (S 1)
9	Excitation (R 1)
Housing	Connect cable shield to the housing of the SUB-D connector

If the motors has no temperature sensor, then

• connect pins 2 and 6 in the 9-pin connector.

4.1.5 Encoder signals "Gebersignale" (SUB-D male connector X4, 9-pin)

The 9-pin SUB-D connector "Encoder signals" is only fitted when one of the encoder modules (options G1 to G4) is installed.

Pin	Assignment
1	Switching input "Hold" (only with option F1, "Holding control loop")
2	0 Volt
3	Pulse output phase 1 (U _{A1})
4	Pulse output phase 2 (U _{A2})
5	Pulse output index pulse (U _{A0})
6	Voltage supply encoder module +24 V, only with 24 V version
7	Pulse output phase 1 inverse ((U_{A1}) , for 24 V vers. not assigned
8	Pulse output phase 2 inverse ((U_{A2}) , for 24 V vers. not assigned
9	Pulse output index pulse inverse (/ U_{A0}), for 24 V vers. not assigned
Housing	Connect cable shield to the housing of the SUB-D connector

4.2 Details about the signals

This section describes details about the signals named in the connection assignments. The sequence corresponds to the sequence of connectors given above.

4.2.1 Auxiliary voltage outputs

The two auxiliary voltage outputs are primarily for connecting an external setpoint potentiometer for initial tests (see fig. 7, page 60).

The auxiliary voltage outputs are led via PTC resistors and therefore short-circuit proof. For further details see the table "Technical specifications" (page 15). The auxiliary voltages are only roughly stabilized, their voltage values vary within the given tolerances when the amplifier output is placed under load.

4.2.2 Setpoint through differential amplifier

The setpoint input is applied to a internal differential amplifier with the two inputs E– and E+.

• When correctly connected (see section 4.4.10, page 42), you avoid faults caused by neutral loops with the differential input.

Tip

A positive setpoint (E– positive against E+) results in a clockwise rotation of the motor shaft when looking towards the bearing plate. This applies if

• the costumer module has not been modified.

4.2.3 Switching inputs and switching outputs

Through the switching inputs and switching outputs, the servo amplifier works together with

- with external switches,
- with the primary controller.

4.2.3.1 **Properties of the switching inputs and outputs**

Two possible polarities by means of polarity module (P module, see also type code):

- Switching towards zero when no polarity module is used (P0 in type code),
- Switching towards positive (PLC-compatible), when polarity module is used (P1 in type code). Positive is
 - either the externally supplied PLC operating voltage (+15...+35 V, preferably +24 V),
 - or the internal auxiliary voltage of +15 V.

The outputs are applied via PTC resistors and are thus

• short-circuit-proof.

Each output can operate a miniature relay (max. 30 mA at max. 35 V).

• The coil must be cleared by a diode.

The specifications are shown in the following table.

Technical data of the switching inputs and	"Switching towards	PLC-compatible version		
switching outputs	zero" version	With internal auxiliary voltage	With externally supplied PLC voltage	
Input resistor (switching input)	22 kΩ to- wards +15 V	2.2 kΩ towards 0 V	2.2 kΩ towards 0 V	
Output resistor (switching output)	125 Ω to- wards 0 V	125 Ω towards +14 V	125 Ω towards PLC voltage	
Maximum permissible load current	30 mA	10 mA	30 mA	
Permissible PLC signal voltage	-	+15+35 V		
Logic level for logical 0	open or >13 V	open or <2 V		
Logic level for logical 1	<2 V	>13 V		

4.2.3.2 Switching input "Controller enable"

At the switching input "Controller enable", the logic level for

- "1" leads to amplifier enabled (motor can run),
 - the green "Ready" LED lights up,
- "0" leads to amplifier disabled.
 - the motor decelerates brakeless,
 - the green "Ready" LED flashes.

Caution

Disabling through the "Controller enable" switching input does not meet the safety requirements of the machine directive.

- If an emergency stop or a safety shutdown of the machine is required,
 - the instructions given in section 7.3 concerning the safety requirements of the machine directive must be followed strictly.

4.2.3.3 Switching input "Reset fault"

The logic level at the "Reset fault condition" input

- must be set to "0" at rest,
- is briefly switched to "1" when a stored fault is to be reset.

For further details on the fault signal and on the fault memory, see section 4.2.10, page 30.

4.2.3.4 Switching output "Fault" or "Ready"

The "Fault" output is present

• when no polarity module (P0) or polarity module P1 is used.

When the servo amplifier is working correctly, then

• the "Fault" output is set to "0".

If there is a fault, then

• the "Fault" output switches to "1".

For further details on the fault signal and on the fault memory see section 4.2.10, page 30.

On request, the "Ready" output can be switched instead of the "Fault" output. Since the same connector pin on the control signal male connector is used for both options, the two outputs cannot be present at the same time.

The "Ready" output is inverse to the "Fault" output. It is present

• when the polarity module P2 is used.

When the servo amplifier is working correctly, then

• the "Ready" output is set to "1".

If there is a fault, then

• the "Ready" output is set to "0".

For further details on the fault signal and on the fault memory, see section 4.2.10 "Fault memory", page 30.

If the amplifier is off circuit, then

• the output is disabled, that is, it is at 0 V.

The polarity module P1 can be converted into the polarity module P2 using a solder bridge. For further information, please refer to section 11, "Notes for specialists", on page 73ff.

4.2.3.5 Switching output "Overload"

When the servo amplifier is being operated within the set continuous current limits, or when peak current is only drawn briefly, then

• the output is "0".

If the current limiting circuit has switched back from peak current to continuous current due to an overload, then

• the output switches to "1".

4.2.3.6 Switching output "Motor standstill" or "Power circuit ready"

The "Motor standstill" output is available only

• if the standard version of the Z1 or Z2 add-on module is used.

If the servo motor is operated at a speed greater than 1% of the maximum possible speed,

• the "Motor standstill" output is set to "0".

If the servo motor runs more slowly, or is at a standstill, then

• the "Motor standstill" output is set to "1".

On request, the "Power circuit ready" output can be switched instead of the "Motor standstill" output. Since the same connector pin on the control signal male connector is used for both options, the two outputs cannot be present at the same time.

The "Power circuit ready" output reports that the power circuit is ready (that is, functional). It is only available

- if the standard version of the Z4 add-on module or
- if the appropriate special version of the Z1 or Z2 add-on module is used.

The Z1 or Z2 add-on module can be converted from the standard version ("Motor standstill") into the special version ("Power circuit ready") by means of a solder bridge. For further information, please refer to section 11, "Notes for specialists", on page 73ff.

When the servo amplifier

- · is working correctly and
- is not disabled, either by the controller enable or by means of a limit switch,
 - then the "Power circuit ready" output is set to "1".

When the servo amplifier

- is faulty or
- disabled, then
 - the "Power circuit ready" output switches to "0".

For further details on fault monitoring, please refer to section 4.2.10 "Fault memory", page 30.

4.2.4 Analog outputs

The analog output "Speed monitor" supplies a

- voltage proportional to the motor speed, the polarity corresponds to the direction of rotation,
 - for example to connect a measuring instrument to display the speed.

The analog output "Current monitor" supplies a

• voltage proportional to the current flowing in the motor, the polarity corresponds to the direction of the torque.

Preconditions:

- Motor correctly connected,
- Motor operating within the voltage limits of the amplifier.

For values of both outputs see table "Technical specifications" on page 15.

4.2.5 Encoder signals, holding function

Encoder signals are available

• only when a encoder module is in position.

Encoder modules are available

- with 5 volt outputs and
- with 24 volt outputs.

For further details see section 6.4, page 52.

The "Hold" switching input is only available

- when the "Holding function" module is in position.
 - The motor can then be shut down with holding torque without the motor shaft continuing to turn slowly. For further details see section 6.5.1, page 54.

4.2.6 **Position sensor**

The input for the position sensor is dimensioned for the common servo drive-type

• 2-pin resolver (1 pole pair) with a gear ratio of 1 : 0.5.

4.2.7 Motor temperature sensor

At the "Position sensor" connector, the

• motor temperature sensor is also connected.

The following are suitable as temperature sensors:

- · Thermo switch which opens in case of overheating, or
- PTC resistor, which raises its value to over 2 kΩ in case of overheating.

4.2.8 Sensor fault detection

The position sensor (resolver) and its supply leads are monitored.

- If the resolver breaks down, or
- · if one or more resolver leads are interrupted
 - the drive is shut down immediately,
 - the fault memory is enabled,
 - the fault is reported through the "Fault" output,
 - and displayed by the "Fault" LED flashing.

With this fault, the fault memory cannot be reset through the "Reset fault" input, but only by switching the operating voltage off and on again, or the supply voltage in the case of the external supply of the control circuit (module E1).

4.2.9 Block protection

If the motor is blocked, this is not a case of normal operation.

- If the motor is at a standstill for longer than about 4 seconds at maximum current,
 - the drive is shut down, and
 - the fault is reported through the "Fault" output, and
 - through the "Fault" LED flashing.

4.2.10 Fault memory

The following faults do not lead to damage, but to a machine shutdown and to a fault signal:

- overheating of the power circuit,
- overheating of the motor if it is fitted with a temperature sensor,
- short circuit between one or more motor leads and earth or protective earth conductor,
- short circuit between the motor leads,
- faulty internal auxiliary voltage,
- operating voltage too high or too low,
- customer module absent,
- fault in resolver or its supply leads,
- motor blocked for longer than about 4 seconds.

External fault signal (except in the case of overheating, see below):

- "Fault" switching output switches to "1", and
- "Fault" LED lights up.

The fault is stored (exception "Operating voltage too low"). A fault signal can only be reset when the cause of the fault has been eliminated. To reset

- the switching input "Reset fault" is switched briefly from "0" to "1". This does not reset "resolver faults". Or
- the operating voltage is switched off and then on again, or the supply voltage in the case of the external supply of the control circuit (module E1). This also resets "resolver faults".
 - Before switching back on, wait until the "Fault" LED has gone out.
 - In the case of the external supply of the control circuit (module E1), if the supply voltage is switched off and then on again to reset the fault, the position information stored in the control circuit is deleted.

External fault signal in the case of overheating (power circuit or motor):

- "Fault" switching output switches to "1", and
- "Fault" LED
 - flashes as long as the temperature limited is exceeded,

- lights up constantly when it has cooled down below the temperature limit.
 - Only then can the fault memory be reset.

The operating voltage may reach an excessively high value

- if the motor is braked and the shunt regulator is missing. For further details see section 9.2.2, page 65.
 - If the operating voltage is too high, the fault is stored.

If the voltage falls below the minimum permitted operating voltage or, in the case of the external supply of the control circuit (module E1), if it falls below the minimum permitted supply voltage,

- · this is reported as a fault through the
 - "Fault" switching output and the
 - "Fault" LED.

This fault is not stored,

• it disappears when the correct operating voltage has been reached again.

4.3 Interface details

4.3.1 Connector X2, control signals, switching towards zero

The following figure shows the interface details (internal circuit) at the 15-pin SUB-D male connector for the control signals (section 4.1.3.2, page 21)

- for the version without polarity module (switching towards zero)
- for the version with Z1 add-on module
- viewing the connector from the front, that is, looking at the front panel.

In the version without the Z1 module (section 4.2.1.1) the unassigned inputs and outputs are not connected.

Fig. 2: Control signals, switching towards zero (interface details)

4.3.2 Connector X2, control signals, PLC-compatible

The following figure shows the interface details (internal circuit) at the 15-pin SUB-D male connector for the control signals (section 4.1.3.2, page 21)

- for the version with polarity module (PLC-compatible version)
- for the version with Z1 add-on module
- viewing the connector from the front, that is, looking at the front panel.

In the version without the Z1 module (section 4.2.1.1) the unassigned inputs and outputs are not connected.

Fig. 3: Control signals, PLC-compatible (interface details)

4.3.3 Connector X4, encoder signals, 5-volt version

The following figure shows the interface details (internal circuit) at the 9-pin SUB-D connector for the encoder signals (section 4.1.5 on page 23)

- for the 5-volt version
- viewing the connector from the front, that is, looking at the front panel.

If the option F1 "Holding control loop" is missing, connection point 1 is not connected.

Fig. 4: Encoder signals, 5-volt version (interface details)

4.3.4 Connector X4, encoder signals, 24-volt version

The following figure shows the interface details (internal circuit) at the 9-pin SUB-D connector for the encoder signals (section 4.1.5 on page 23)

- for the 24-volt version
- viewing the connector from the front, that is, looking at the front panel.

If the option F1 "Holding control loop" is missing, connection point 1 is not connected.

Please note

• the separate voltage supply of the output.

Fig. 5: Encoder signals, 24-volt version (interface details)
4.4 Connection directions

CE/EMC

The EMC limits in accordance with EN 55011, A and B (emission) as well as EN 50082-1 and 2 (immunity) are complied with,

- if the KSV 6HE drive package is connected in accordance with the directions given here.
- Only then is the CE marking valid.

If the connection directions are not complied with,

 the installation in which the amplifiers are being operated must be checked for compliance with the EMC limits at the discretion of the customer.

Figure 6 shows for one axis of the KSV 6HE drive package

- the prescribed connection,
- the laying of the cables and of the potential equilization cables,
- the prescribed earthing of the cable shields.

4.4.1 Installation on the mounting plate

When installing the amplifier on a mounting plate, screw the device onto the bare metal (e.g. zinc-plated) mounting plate

• with the bare metal housing.

The mounting plate has to

- be earthed, and therefore
- · either carry the central zero point on its own, or
- be connected to the central zero point via a shortest possible potential equilization cable
 - of cross-section 10 mm² or more, or better
 - using a wide copper braiding earth strip.

Fig. 6: Connection directions

Danger

Do not

4.4.2 Potential equilization cables

Figure 6 shows potential equilization cables. They come from the central zero point of the control cabinet. Their tasks are:

- they form a low-resistance connection between various zero points,
- · they reduce compensating current on the cable shield
 - and thus prevent electrical faults.

The central zero point of the control cabinet is connected to the PE (protective earth) conductor. This connection

ensures protection of the operating and maintenance personnel in case of electrical faults.

Due to leakage current from the built-in RFI filter, the potential equilization cable from the central zero point to the PE bolt of the amplifier must, in accordance with DIN VDE 0160 (like the protective earth conductor)

• have a cable cross-section of at least 10 mm² Cu.

The other potential equilization cables must have

• a cross-section of at least 2.5 mm², or preferably 4 mm².

It is true that drives can run without potential equilization cables, without shielded cables and without compliance with safety regulations. However, this

- is contrary to elementary safety requirements,
- violates statutory regulations and
 - endangers the safety of persons,
 - endangers the operational safety of the system and
 - may lead to faults from and in other parts of the system.

4.4.3 Mains connection

The mains transformer

• is chosen corresponding to the technical specifications of the transformers in section 9.3.3, page 68.

The connections are clearly labeled at the terminals of the transformers.

The cable between mains and the transformer

• is led through line-side fuses, see the table on page 68 for values,

- must have an adequate cross-section for the chosen mains transformer given in the same table,
- must have a fixed connection.
- Shielding is not required.
- Connect PE to earth.
- The secondary neutral point of the mains transformer has to be earthed.

The cable between transformer and the built-in power supply

- must have an cross-section as given in table "Technical specifications" on page 15.
- Shielding is not required.

4.4.4 Connection of the built-in power supply

The bus voltage supplied by the built-in power supply is connected externally to the amplifier using the Combicon terminal strips. Connect the power supply and the amplifier by

- 3 short leads,
 - cross-section as given in the table "Technical sepcifications" on page 15.
 - Assignment: green yellow for PE, blue for $-U_B$, red for $+U_B$.
- Avoid unnecessary loops.

Do not

Check

The bus voltages of several compact amplifiers must not be connected. The equalizing currents could damage the power supply.

4.4.5 Motor connection, general information

For the motors supplied by Georgii Kobold, the connection is given in the motor connection sheet shipped with each motor. To connect other motors not supplied by us, please contact us.

The 3 motor phases must be connected with the correct assignments, otherwise

- · the motor blocks,
- the motor runs roughly,
- the motor runs with a low torque, or
- the motor runs uncontrolled at full speed.

Danger

 This causes no damage either to the motor or to the amplifier, but there is a risk for the machine and the installation personnel.

As shown in fig. 6, the motor is connected using a 4-pin shielded cable.

- Use the motor supply cable described in the accessories, for further details see section 10.2.2 on page 69.
- Connect the motor cable shields as described in the following section.
- Connect the machine earth to the central zero point of the control cabinet using an potential equilization cable with an adequate cross-section.

4.4.6 Shield connection motor cable

CE/EMC

A cable clamp is provided on the amplifier for the shielded motor cable. Use this to

- establish a large-area connection between the shield and the housing
 - by folding back the strands of the shield over the cable sheath and securing the whole using the cable clamp.

Establish a large-area connection between the shield and earth at the motor in a suitable manner.

• At all places, avoid earthing the shield using twirled strands (pigtails) of the shield.

The shield of the motor cable must not be interrupted.

- If you have to install contactors, switches or chokes in the motor cable,
 - then install these in a metallic housing and
 - establish a large-area connection between the shield and the housing using a cable clamp, as described above.

The motor cables

- have to leave the control cabinet at shortest possible distance,
- must not be laid parallel to sensible control leads or unshielded mains cables.
 - If parallel arrangement cannot be avoided, ensure a distance of min. 25 cm to the other cables.

4.4.7 Motor choke

CE/EMC

Longer motor cables can overload the device and lead to intolerable high emission.

- If the motor cable is longer than 7 m,
 - install the appropriate motor choke supplied by us in the motor cable at the amplifier side.

For cable lengths, order numbers and technical specifications of the chokes, please refer to section 10.2.4, page 71.

4.4.8 Shield connection of the external shunt resistor cable

If an external shunt resistor is connected (see section 9.2.5, page 66 for further details)

- use a shielded cable,
- connect the shield to the amplifier housing using the cable clamp provided, as shown in fig. 6.
- Earth the shield at the other end of the cable as well, that is, at the housing of the shunt resistor.

4.4.9 Connection, shielding and laying of the control leads

CE/EMC

These notes on connection, shielding and laying of the control leads apply for the following three sections.

- Use only shielded leads.
- The SUB-D connectors must have metal-plated housings, like the connectors supplied by us.
 - There, the shield is connected with a low resistance to the housing via the strain relief.
- This allows you to achieve the necessary large-area earth connection for the shield and
 - to avoid earthing the shield using twirled strands (pigtails) of the shield.

Do not lay control leads parallel to motor cables.

Tip

4.4.10 Setpoint connection

When connecting the setpoint source (top right in fig. 6)

- ensure that earthing and shielding have been correctly carried out,
 - to avoid faults at the amplifier input,
 - to prevent faults at the setpoint source.
- First precaution: shield the setpoint lead.
 - Connect the shield on the setpoint source to the appropriate zero.

In particularly critical cases

- to avoid sheath current, install an potential equilization cable on the shield parallel to the setpoint lead, with a cross-section of at least 2.5 mm². Or
- apply only a high-frequency shield on the side of the setpoint source using a low-induction capacitor (e.g. 10 nF, 400 V).

Always use the differential input,

- this prevents zero loops, that is, the coupling of interference via the input zero.
 - Apply the setpoint at input E-.
 - Connect input E+ with zero at the setpoint source.

4.4.11 Connection of the encoder signals

Figure 6, top right, shows the connection of the encoder signals to a positioning controller. Please note:

- Choose twisted pair cables for the 5-volt version.
- Use a shielded cable
 - for example the resolver/encoder connecting cable mentioned in the accessories, for further details see section 10, page 69ff.
 - Connect the shield at the amplifier to the earthed amplifier housing using the metal-plated SUB-D housing.
 - Additionally, earth the shield at the controller,
 - follow the recommendations of the controller manufacturer concerning earthing and shield connection.

4.4.12 Connecting the position sensor (resolver)

The connection cable to the position sensor (resolver) must

- be laid separate from the motor cable,
- be connected exactly according to the instructions, otherwise
 - the motor blocks,
 - the motor runs roughly
 - the motor runs with a low torque
 - the motor runs uncontrolled at full speed, or
 - the servo amplifier reports a fault.
 - This causes no damage either to the motor or to the amplifier, but there is a risk for the machine and the installation personnel.

To connect up the resolver as shown in fig. 6

- use twisted pairs of leads for channel 1, channel 2 and excitation,
 - for example the resolver/encoder connection cable mentioned in the accessories; for further details see section 10.2.3, page 70,
- connect the shield using the strain relief of the metal-plated SUB-D housing,
 - this allows you to achieve the necessary large-area earth connection for the shield and
 - to avoid earthing the shield using twirled strands (pigtails) of the shield.
- Do not connect the shield at the motor side.

4.4.13 Connection of the motor temperature sensor

The motor temperature sensor is connected via the cable for the position sensor and its connector.

- If the motor has no temperature sensor,
 - the two connecting points provided for this purpose in the 9-pin male connector of the position sensor are connected to each other.

Danger

Check

5 Adjustment and display elements

The adjustment and display elements contained in all KSV 6HE versions are described here. Special information for the versions with expansion modules is given with the appropriate options.

5.1 Trim potentiometers

3 trim potentiometers are accessible on the front panel of the amplifier. Their significance is, in the sequence from top to bottom:

Front panel	Schematic diagram	Description	Effect with clockwise rotation
Feedback "Verstärkung"	P 1	Amplification speed control circuit	Amplification rises
Speed "Drehzahl"	P 2	Speed adjustment	Speed rises
Offset "Nullpunkt"	P 3	Offset adjustment	

If the module F1 for activating the holding control loop is fitted, the trim potentiometer "Hold" ("Halten") is located on the customer module (P4 / gain holding control loop). The trim potentiometer "setpoint gain" ("Sollwertverstärkung") can be installed on the customer module as an option.

5.2 Current limiting and "Current" rotary switch

A current limiting device with I²t function protects the motor and the amplifier. From the unloaded state, a maximum current equivalent to the preset peak current is possible.

- If the square of this exceeds a certain given threshold value for a certain time,
 - then the current is reduced to the value of the preset continuous current, and an external "Overload" signal is given.

The amplifier can be operated for any length of time in this state. If the current is reduced, the "Overload" state is canceled after some time.

The 16-position rotary switch "Current" ("Strom") for setting the current limit is located at the top of the PCA, approximately 100 mm behind the customer module. It is not accessible from outside so that it cannot be adjusted unintentionally. The assignment of the switch positions to the values for the motor current limit (continuous current

Servo amplifier	KSV 1,5 pact c	5/5 com- lesign	KSV 3/2 pact c	10 com- lesign	KSV 6/2 pact c	20 com- lesign	KSV 9/3 pact c	30 com- lesign	KSV 12 pact o	/30 com- design
"Current" switch	Cont. current I _D (A)	Peak current I _I (A)								
0	0.38	1.25	0.75	2.5	1.5	5.0	2.25	7.5	3.0	7.5
1	0.45	1.5	0.9	3.0	1.8	6.0	2.7	9.0	3.6	9.0
2	0.53	1.75	1.05	3.5	2.1	7.0	3.15	10.5	4.2	10.5
3	0.6	2.0	1.2	4.0	2.4	8.0	3.6	12.0	4.8	12.0
4	0.68	2.25	1.35	4.5	2.7	9.0	4.05	13.5	5.4	13.5
5	0.75	2.5	1.5	5.0	3.0	10.0	4.5	15.0	6.0	15.0
6	0.83	2.75	1.65	5.5	3.3	11.0	4.95	16.5	6.6	16.5
7	0.9	3.0	1.8	6.0	3.6	12.0	5.4	18.0	7.2	18.0
8	0.98	3.25	1.95	6.5	3.9	13.0	5.85	19.5	7.8	19.5
9	1.05	3.5	2.1	7.0	4.2	14.0	6.3	21.0	8.4	21.0
А	1.13	3.75	2.25	7.5	4.5	15.0	6.75	22.5	9.0	22.5
В	1.2	4.0	2.4	8.0	4.8	16.0	7.2	24.0	9.6	24.0
С	1.28	4.25	2.55	8.5	5.1	17.0	7.65	25.5	10.2	25.5
D	1.35	4.5	2.7	9.0	5.4	18.0	8.1	27.0	10.8	27.0
E	1.43	4.75	2.85	9.5	5.7	19.0	8.55	28.5	11.4	28.5
F	1.5	5.0	3.0	10.0	6.0	20.0	9.0	30.0	12.0	30.0

 $I_{\scriptscriptstyle D}$ as rms value and peak current $I_{\scriptscriptstyle I}$ as crest value) is shown in the following table.

If the desired type of motor is given in the order, the current is factoryset to the permissible motor current. If not, the "Current" rotary switch is set to position 5.

If you have changed the factory settings, it is essential that you should document the new switch position in the table in section 12, page 82.

5.3 LEDs

There are three LEDs on the left side of the front panel, below the trimming potentiometers:

Marking	Color	Display
Fault	red	lights up when fault is stored
Storung		 flashes as long as power circuit or motor is over- heated
		flashes in the event of a resolver fault
Ready green		 lights up when amplifier is ready
"Bereit"		flashes when amplifier is disabled
		 flashes when fault is stored
Overload "Überlast"	yellow	 lights up when switched from peak current to con- tinuous current in the event of an overload

When the mains voltage is switched on, the amplifier remains disabled until all voltages are stable. During this time, which lasts for some tenths of a second, the red LED lights up.

6 Modular fittings and expansions

This section describes the functions of the modules. The modules of a special KSV 6HE servo amplifier are given in a special type code (as initials). For further details on the type code, see section 3.1, page 15. The modules are called:

- Customer module ("Kundenmodul")
- Add-on module ("Zusatzmodul")
- Polarity module ("Polaritätsmodul")
- Encoder module ("Gebermodul")
- Function module ("Funktionsmodul")
- External supply for control circuit

Not all modules are real boards, variants that have been implemented differently are also possible.

6.1 Customer module Kx

The pluggable customer module contains

- all assemblies to be set during installation,
- assemblies for special features such as current control or speed control.

When an amplifier is replaced, the customer module can be transferred to the new amplifier. Readjustment is therefore not necessary. The customer module is fitted in all versions.

To replace the customer module

remove fixing bolt and take out the module.

The customer module is located on the left.

Amplifiers equipped with different customer modules differ also in the arrangement of the jumpers on the amplifier board.

6.2 Add-on modules Zx

Many additional characteristics can be implemented by means of addon modules. The mode of operation of the Z1, Z2, and Z4 add-on modules is described in the following, further add-on modules are available on request.

6.2.1 Add-on module Z1

Additional characteristics when fitted with the Z1 add-on module:

- 2 limit switch inputs, directional, braked,
- controller enable, braking in case of shutdown, can be switched to non-braking using a solder bridge,
- switching output internally selectable, "Motor standstill or "Power circuit ready",
- peak current can be switched off by means of a solder bridge,
- ramp function, can be switched on by means of a solder bridge.

Using the limit switch inputs, the motor is

• shut down depending on the direction of rotation, and is actively braked by reversal.

The "Controller enable" input also

- actively brakes the motor by reversal. Active braking can be switched off.
 - For conversion by the specialist see section 11.3, page 77.

An additional switching output supplies

- the "Motor standstill" signal or
- the "Power circuit ready" signal as a special version.
 - For conversion to the version with the "Power circuit ready" signal see section 11.3, page 77.

If the peak current rise is to be switched off, a solder bridge must be installed,

• for further details see section 11.3, page 77.

The ramp function is not active as delivered. To activate it, a solder bridge must be installed,

• for further details see section 11.3, page 77.

The ramp rise can be set with a potentiometer on the add-on module. The potentiometer is marked with two ramp symbols.

- Left-hand limit: slope of 7 ms per 1 V of setpoint voltage,
- right-hand limit: slope of 70 ms per 1 V of setpoint voltage, that means: a setpoint jump of 10 volts leads to a linear rise of the internally effective setpoint within 0.7 seconds.

The ramp function is effective in all 4 quadrants. It is also effective

- when actuating a limit switch and
- when actuating the controller enable.

Please note: the Z1 add-on module is practical only for speed-controlled drives. In a KSV 6HE amplifier configured for current control, the functions "Limit switch" and "Controller enable" do not have a braking effect.

Tip

It is essential that you should document all changes in the table in section 12, page 82.

6.2.2 Add-on module Z2

Additional characteristics when Z2 add-on module is fitted:

- externally adjustable current reduction,
- externally switchable setpoint reversing (for PLC with single-pole analog output),
- controller enable, braking in case of shutdown, can be switched to non-braking using a solder bridge,
- switching output "Motor standstill" or "Power circuit ready" internally selectable,
- peak current can be switched off using a solder bridge,
- ramp function, can be switched off using a solder bridge.

The external analog input "Current reduction" proportionally reduces the current limit set with the "Current" selector switch:

- If the input is open, or if it is set to +10 V,
 - the current limit has the effect which has been set at the "Current" selector switch.
- If there is a voltage of less than +10 V at the input,
 - the current limit is reduced proportionally. First only the peak current is reduced. Only when the current limit is lowered by the external setpoint below the peak current value, the continuous current is also reduced.
- Values of over +10 V do not cause a higher current than 100%, and values of less than +0.1 V do not cause a lower current than 1% of the set value.

The peak current rise can be switched off,

• for conversion by the specialist see section 11.3, page 77.

The additional switching input "Setpoint reversing"

- reverses the polarity of the setpoint internally.
 - If it is open or set to "0", the setpoint leads to the same direction of motor rotation as without the module.
 - If it is switched to "1", the direction of the motor rotation is reversed.

The "Controller enable" input

- actively brakes the motor by reversal. Active braking can be switched off.
 - For conversion by the specialist see section 11.3, page 77.

An additional switching output supplies

- the "Motor standstill" signal or
- the signal "Power circuit ready" as a special version.
 - For conversion to the version with the "Power circuit ready" signal see section 11.3, page 77.

The ramp function is not effective as delivered. To activate it, a solder bridge must be installed,

• for further details see section 11.3, page 77.

The ramp rise can be set with a potentiometer on the add-on module. The potentiometer is marked with two ramp symbols.

- Left-hand limit: slope of 7 ms per 1 V of setpoint voltage,
- right-hand limit: slope of 70 ms per 1 V of setpoint voltage, that means: a setpoint jump of 10 volts leads to a linear rise of the internally effective setpoint within 0.7 seconds.

6.2.3 Add-on module Z4

Check

The customer module labeled "P+I/I-lim" has to be installed when using the Z4 add-on module.

Additional characteristics when fitted with the Z1 add-on module:

- speed control with limitation of the I component,
- 2 limit switch inputs, directional, braked,
- controller enable, braking in case of shutdown, can be switched to non-braking using a solder bridge,
- switching output "Power circuit ready",
- peak current can be switched off by means of a solder bridge,

The speed control loop is divided

- in the P component (P controller)
 - adjustable with the "Feedback/Verstärkung" potentiometer on the front panel
- and the I component (I controller).
 - The I time constant can be selected by solder bridges on the Z4 add-on module (for further details see section 11.3.7, page 80).

For overshoot suppression in the speed control loop

- the I component can be limited.
 - The limitation threshold can be selected by solder bridges on the Z4 add-on module (for further details see section 11.3.7, page 80).

For the purpose of commissioning, a special module is available on which

 potentiometers for I time constant and limitation threshold are mounted.

The special module is not suitable for normal operation, because the potentiometers

• can only be adjusted when the device is open.

Using the limit switch inputs, the motor is

 shut down depending on the direction of rotation, and is actively braked by reversal (PLC-compatible).

The "Controller enable" input also

- actively brakes the motor by reversal. Active braking can be switched off.
 - For conversion by the specialist see section 11.3, page 77.

An additional switching output supplies

the "Power circuit ready" signal (PLC-compatible).

If the peak current rise is to be switched off, a solder bridge must be installed,

• for further details see section 11.3, page 77.

Tip

It is essential that you should document all changes in the table in section 12, page 82.

Tip

6.2.4 Further add-on modules

Further add-on modules are available as

• customer-specific solutions specially adapted to the application.

6.3 Polarity module Px

The function of the polarity module has already been described in section 4.2.3.1 on page 24: it ensures that the switching inputs and outputs are PLC-compatible, that is, that they switch towards +24 V. If it is not implemented, these inputs and outputs switch towards zero.

6.4 Encoder modules G1 to G4

Application of the encoder signals:

- Connection of positioning controls
- Connection of a digital speed counter for monitoring the motor speed.

For all encoder modules, 16 different pulse numbers can be set.

Encoder signals are available only if the encoder module is fitted. For the various encoder modules see type code, section 3.1 on page 15:

- Standard G1 encoder module: outputs like standard incremental encoder:
 - 5 volt push-pull, RS 422 interface with SN 75114 line driver,
 - phase 1, phase 2, index pulse and corresponding complement, that is 6 lines,
 - outputs electrically connected to the amplifier circuit.
- G3 encoder module: characteristics like G1, but in addition with:
 - adjustable index pulse. The index pulse can be shifted in 256 steps within one motor revolution. For further details see section 6.4.2, page 53.
- G2 encoder module:
 - pulse output for 24 volts, interface push-pull outputs, actively switching towards zero and towards +24 volts,
 - phase 1, phase 2 and index pulse without complement over 3 lines,
 - outputs electrically connected to the amplifier circuit,
 - outputs short-circuit-proof,

- external supply as with incremental encoders with +24 V ±20%.
- G4 encoder module: characteristics like G2, but in addition with:
 - adjustable index pulse. The index pulse can be shifted in 256 steps within one motor revolution. For further details see section 6.4.2, page 53.

The following applies for all encoder modules:

- When the motor shaft rotates clockwise, looking towards the bearing plate, phase 2 lags behind phase 1. This corresponds to the definition with the output impulses of an incremental encoder.
- With all pulse figures, the index pulse like standard incremental encoders – has half the width of the pulses from phase 1 and phase 2.

6.4.1 Pulse setting

A rotary switch with 16 positions on the encoder module is for setting the pulse number. The following applies:

Switch setting	Pulses per revolution	Switch setting	Pulses per revolution
0	128	8	500
1	256	9	1000
2	512	А	90
3	1024 *	В	180
4	50	С	360
5	100	D	720
6	200	E	900
7	250	F	60 **

standard factory setting

** specially intended for speed display with frequency meter. Gives direct revolutions per minute if the display is set to Hz.

It is essential that you should document the switch position in the table in section 12, page 82, if you have changed the factory settings.

6.4.2 Index pulse adjustment

With the G3 and G4 encoder modules (adjustable index pulse) the position of the index pulse can be shifted within a motor revolution. For this purpose the encoder module has two rotary switches "Rough" and "Fine", and three LEDs.

- The "Rough" switch shifts the pulses by 22.5° per step,
- the "Fine" switch shifts them by approx. 1.4° per step.
- The "Zero" LED indicates the index pulse, that is, the moment when the output level is "High".
- The "Rough" and "Fine" LEDs light up when the index pulse is within the setting range of the appropriate switch.

Adjustment instructions:

- 1. Turn the motor shaft to where the index pulse should be.
- 2. Turn "Fine" switch until the "Fine" LED lights up,
- 3. Turn "Rough" switch until the "Rough" LED lights up.

As with incremental encoders, the index pulse here also has the width of an increment. The index pulse can be adjusted in steps of approx. 1.4° with the two switches. This corresponds to a resolution of 256 steps on the circumference. When a pulse figure of over 256 is set, then the index pulse is narrower than 1/256 of the circumference. For this reason, the "Zero" LED does not light up within the entire adjustment window of 1.4°. For it to light up, the motor shaft must be rotated within the window to the exact zero point.

6.5 Function module Fx

Tip

Various functions, including customer-specific functions, are implemented on the function module. So far, there are the hold function and the field weakening mode, which will be described in the following.

6.5.1 Hold function F1

Disadvantages of conventional servo drives when the motor is at a standstill:

- If the controller enable is canceled, the motor is at a standstill without torque,
- If the torque setpoint is made zero, the motor comes to a standstill with holding torque, but due to the offset drift of the speed controller it rotates slowly in the one or the other direction.

These disadvantages can be avoided if the F1 "Hold function" module is used. In many cases the magnetic brake, which is otherwise necessary, is no longer required. Mode of operation of the hold function: when the hold command is entered at the "Hold" input through logical "1", then

- the external setpoint is switched off internally.
- The internal holding control loop digitally saves the position of the motor at the moment the command was given.
- The holding control loop returns the motor to this position and holds the motor in this position with its full torque.

The holding control loop monitors the position within one revolution. If the motor has required more than one revolution to come to a standstill from a higher speed due to inertia, these revolutions are not recalled.

Example of a simple positioning solution:

- A pre-sensor reduces the speed of the motor in good time before the position so that later no more than a single revolution will be needed to brake the motor,
- a sensor gives the hold command at the position,
- the motor brakes and the internal holding control loop recalls it to the switching point of the position sensor.

Caution

In many cases the holding control loop makes a magnetic brake on the motor superfluous. If the safety aspects derived from the machine directive require the brake, however, it cannot be replaced by the holding control loop.

6.5.2 Field weakening mode F2

In AC servo drives, the maximum speed that can be reached can be increased at reduced torque by shifting the phase of the motor current at higher speeds. Since the phase-shift results in a weakening of the torque-forming part of the magnetic rotary field, this operating mode is also called "Field weakening mode" by analogy with the terms used for DC drives.

The F2 function module "Field weakening mode" shifts the phase of the motor current in the desired direction from a predefined speed, depending on the direction of rotation. This predefined speed is factory-set on a trim potentiometer on the module. This setting must not be changed.

6.6 Option E1 external supply of control circuit

In the standard version, the E1 module "External supply of control circuit" module is not fitted. When the supply voltage is switched off,

• the position information disappears.

The version with the E1 module "External supply of control circuit" has an input for the separate feeding of a supply voltage of 24 V (see table "Technical specifications", page 15, for connection see section 4.1.3, page 20). When the supply voltage is switched off,

 the position information is saved as long as the external supply voltage is connected.

This module is used

- when (for example in case of an emergency stop) the supply voltage of the amplifier is switched off and
- the position information must be saved.

The "External supply of control circuit" module is not a pluggable module, but a modular variation which cannot be retrofitted on site.

7 Shutting down the motor and safety shutdown

7.1 Shutting down options

Options for shutting down the motor:

- Disabling through the "Controller enable" input
 - without Z1, Z2, or Z4 module: the motor decelerates brakeless,
 - with Z1, Z2, or Z4 module: the motor is actively braked by reversal.
- Switch off via limit switch (only with Z1 or Z4 module), directional:
 - motor is actively braked by reversal.
- Switch off the speed setpoint (set setpoint to 0 volts):
 - motor is actively braked by reversal.
- Switch off the supply voltage:
 - motor decelerates brakeless,
 - the position information is lost.
- Switch off in the motor supply line
 - without braking resistors: motor decelerates brakeless,
 - with braking resistors: motor is braked by withdrawal of kinetic energy (less effective than active braking by reversal).

Braking resistors' effect increases as their resistance value falls; the maximum permissible peak current given in the data sheet for the motor may not be exceeded by that. If no value is given, assume that the limit is three times the continuous current.

- Switching sequence when switching off in the motor supply line:
 - first, disable the amplifier (using controller enable),
 - then open the motor line (no delay is required between the two operations, since the power contactor is slower than the disabling operation).
- To switch on again,
 - first close the motor line,
 - then enable the controller (Delay necessary, depending on the power contactor, for example 20 ms or more).

If the braking time is too long with the selected manner of shutting down the motor, the motor can be fitted with a magnetic brake which acts using spring power when the current is switched off.

7.2 Estimating the braking distance

The braking distance of the connected machine part depends on the moment of inertia of the drive and on the mass of the part to be moved (e.g. of the machine carriage).

Example (assumed values):

- Braking time for active braking (limit switch or zeroing of setpoint) 0.1 seconds,
- linear braking from a velocity of 10 meters per minute,
- results in a braking distance of approx. 8 millimeters.
 - This means that with the values of this example, the setpoint must be set to zero at least 8 millimeters before the mechanical limit stop if the stop is not to be struck hard.

7.3 Emergency stop and safety regulations

Do not

The safety regulations to be derived from the machinery directive do not allow safety functions to be carried out by electronic circuits, since the risk of failure cannot be fully ruled out.

• An emergency stop or any other safety circuit must not only be effected by zeroing the setpoint or by using the controller enable.

With emergency stop switches or other functions important for the safety of persons or property, it must therefore be ensured that the shutdown

• is effected directly by positively driven contacts which shut down either the motor supply line or the power supply to the amplifier.

For further details see the relevant regulations, including DIN VDE 0113, EN 60204 "Safety of machines, electrical equipment in machines".

8 Commissioning

For the initial commissioning proceed as described below. Deviate from this procedure only when you have gained enough experience with the devices.

8.1 **Precautions**

Danger

Check

For commissioning, you must always

- disengage the motor from the machine part to be driven, so that its operation can be observed without endangering the machine,
- switch off the mains voltage when carrying out connections and disconnections or replacing components in the amplifier or when working on the motor.

If you wish to proceed particularly cautiously because a high risk can be expected with a particular machine in the event of operating error,

- you should allow a small current only and thus a low torque:
 - Make a note of the actual setting of the rotary switch for current limiting (see section 5.2, page 44).
 - Set the rotary switch to a low value (near the "0" position).
 - After commissioning, restore the original setting of the rotary switch.

8.2 Switching on for the first time

Before switching on, carefully check

- to see whether all connections have been correctly established,
- to ensure that the controller enable input does not block the controller,
- to ensure that the limit switches are closed if the Z1 or Z4 add-on module is being used.

Supply the setpoint using a potentiometer. You can do this as shown in fig. 7 using the auxiliary voltage outputs (section 4.2.1, page 23). Recommended value: 5 to 10 k Ω .

If the supply voltage is now applied while the motor is connected,

- the green LED must light up,
- and the motor must rotate at a speed corresponding to the setpoint applied.

If this is not the case, please check the connection once more. Consult the fault chart in the appendix as well.

Fig. 7: Setpoint potentiometer connection for commissioning

8.3 Setting the speed

During commissioning, the speed is set with the trimmer "Speed" ("Drehzahl") for the given setpoint.

The speed control range is factory-set for the used motor (if known), see type code (page 15), Kx option. To obtain good speed resolution, the lowest possible range for the application should be selected. For conversion on site see section 11.1.1, page 73.

8.4 Setting the feedback: normal case

How to proceed with a speed controller:

Caution

- for drives with limited paths (e.g. carriage drives) check the correct functioning of the limit switches,
- engage the motor with the load to be driven,
- disconnect the higher-level controller, apply the setpoint using the setpoint potentiometer. Be careful with drives with limited paths!
- · Observe motor behavior at different speeds and at standstill,
 - if the feedback is set too hard, the motor runs loud and rough,
 - if it is set too soft, you can move the motor back and forwards a little by hand. This "soft" behavior can cause inaccuracies later when the drive is operated with a higher-level controller.

 Turn the feedback trimmer ("Verstärkung") clockwise until the motor runs loud and rough, then turn back the trimmer approx. one turn.

8.5 Setting the feedback: critical applications

How to proceed with critical applications:

- · check limit switch, connect motor to load as above,
- apply setpoint to amplifier input via a switch so that a setpoint jump can be generated,
- generate a setpoint jump,
- record the step reply at the "Speed monitor" output with a memory oscilloscope,
- evaluate the step reply and correct the feedback setting:
 - for most applications: the speed should reach its final value as fast as possible but only with a slight overshoot.

Under extreme conditions, the adjustment range of the feedback may be insufficient. In this case the reset time must be changed. For further details see section 11.2.1, page 77.

8.6 Setting the feedback with Z4 add-on module

Tip

For the purpose of commissioning, a special module is available on which

 potentiometers for the I time constant and limitation threshold are mounted.

The special module is not suitable for normal operation, because the potentiometers

- jut out of the amplifier and
- can only be adjusted when the device is open.

The locations of the solder bridges on the Z4 add-on module are indicated in section 11.3 (page 77ff).

How to proceed with a speed controller with I component limitation:

- check limit switch, connect motor to load as above,
- switch off I component (close t0 solder bridge),
- adjust P controller (turn the feedback trimmer ("Verstärkung") clockwise until the motor runs loud and rough, then turn back the trimmer approx. one turn),

- set limitation threshold to 20% (close lim2 solder bridge),
- switch on I component (open t0 solder bridge),
- apply reversing motion by position control:
 - optimize step response by reducing the I time constant (t1 and t2 solder bridges),
- select limitation threshold:
 - disturbing overshoot: decrease limitation (lim1),
 - following error: increase limitation (lim3),

optimize I time constant again if necessary.

8.7 Setting the current limit

Factory setting for delivery of drive packages (amplifier and motor):

• Current limit is set to the rated current of the motor.

For changing the current limit at the open device through the "Current" rotary switch see section 5.2, page 44.

It is essential that you should document the new switch position in the table in section 12, page 82, if you have changed the factory settings.

Never set the continuous current higher than permissible for the motor. Otherwise may damage the motor. Should the motor require a higher current in order to work properly, then it has not been dimensioned adequately and a more powerful motor must be selected.

8.8 Setting the offset

Set the offset only when the device has reached operating temperature. How to proceed:

- make setpoint zero; the best way is to disconnect the setpoint cable from the source directly at the setpoint source and shortcircuit it,
- observe motor shaft,
- or observe pulse output if an encoder module is fitted,
- set offset trimmer so that the motor comes to a standstill as well as possible.

8.9 Setting the holding control loop amplification

Applicable only if the F1 function module "Hold function" for the holding control loop is fitted. How to proceed:

 set the "Hold" trim potentiometer in accordance with the application. Excessive amplification leads to unevenness or vibrations in the drive.

To adjust the "Hold" trim potentiometer

remove the mains voltage;

- The servo amplifier must not be operated when it is open.

• pull the servo amplifier out of the chassis for about 40 mm. The trim potentiometer on the customer module is now accessible.

Do not

Chapter 3: Power supply and accessories

9 Power supply of the servo amplifiers

9.1 Load factor

The load factor gives the number of amplifiers that can be connected. You will find it in the technical specifications for the amplifiers and the mains transformers. The following applies:

- When all amplifiers are being operated simultaneously at full load, the sum of their load factors must not exceed the load factor of the mains transformer.
- When not all amplifiers are being operated simultaneously at full load, (which is frequently the case with servo drives), the total load factor is the sum of the load factors of the amplifiers being operated simultaneously.
- When amplifiers are operated under part load only, their load factors are reduced for purposes of the calculation in proportion to the part load.

Example:

• The KSV 3/10 compact design KSV 6HE amplifier has a load factor of 8, the 038100090Z mains transformer has a load factor of 40; this means that this mains transformer can run 4 of these amplifiers simultaneously at full load and a further amplifier at 37% of its load.

9.2 **Power supply**

The power supply is located in the right-hand side panel of the servo amplifier.

9.2.1 Design

The power supply contains

- the input RFI-filter,
- the mains rectifier,
- the charging capacitors,
- the monitoring circuit, and
- the shunt regulator with a shunt resistor sufficient for common servo applications.

On the front panel to the right of the LEDs of the amplifier are

• the three LEDs of the power supply.

9.2.2 Shunt regulator

During braking, the kinetic energy of a rotating servo motor is fed back into the power supply as electrical energy,

• this causes the bus voltage to rise.

A shunt regulator (also called shunt circuit) built into the power supply

• prevents that the power transistors are destroyed by that.

For higher shunt performance, an external shunt resistor can be used. For further details see section 9.2.5 (page 66).

9.2.3 LEDs

Check

The three LEDs have the following meanings:

Marking	Color	Display
Fault "Störung"	red	 lights up when input voltage is too low lights up when shunt resistor is overheated
		 lights up when fuse is defective
		lights up when shunt circuit is short-circuited
Ready "Bereit"	green	 lights up when output voltage >160 V and there is no fault
Shunt "Ballast"	yellow	 lights up when the shunt circuit for accepting the energy returned when the motor is brak- ed is switched on

9.2.4 Technical specifications of the power supply

The technical specifications for the built-in power supply are matched to the appropriate amplifier. The following data for the built-in power supply are only of interest in special cases.

Power supply	2800140000
Mains connection via isolating transformer	3 × 230 V AC +10%
Minimum mains voltage	3 × 120 V AC
Nominal bus voltage	320 V DC
Min. bus voltage	160 V DC
Response threshold of shunt regulator	380 V DC
Maximum continuous braking power	50 W
Peak braking power, 2% switching cycle, 2 sec.	1200 W
Temperature switch-off threshold for shunt resistor	80 °C
Fuse-link shunt circuit (6 × 32 mm)	3.15 A T

9.2.5 External shunt resistor

Operating the unit as a braking controller, where the motors mainly have to work against an external torque in braking mode, requires an external shunt resistor dimensioned for the required power. The internal resistor is insufficient for this.

The resistance of the external shunt resistor should lie between 27 Ω and 33 Ω . The load capability has to be dimensioned according to the required braking power.

If you would like to use an external shunt resistor instead of the internal one, then

- remove the jumper between R_{int} and $+R_{B}$,
- connect the external resistor to the connections R_{ext} and +R_B.

The external shunt resistor

• must be installed in an earthed metal housing

CE/EMC

- to avoid emission and
- as a protection against contact with live parts and with the hot resistor.

The cable

- must have a cross-section of 1.5 mm² and
- must be shielded.

Note the connection directions, section 4.4.8 "Shield connection of the external shunt resistor cable".

The output for the shunt resistor is short-circuit proof. In case of a short-circuit

- the shunt circuit will be switched off.
 - The red LED indicates the fault.

As a consequence, the bus voltage increases during braking until the connected amplifier switch off due to overvoltage,

- the red LED of the amplifier indicates the fault,
 - the "Fault" ("Störung") output switches on.

This fault can only be reset

• by switching the mains voltage off and on again.

9.3 Mains transformers

9.3.1 General information

The mains transformers are laid out for three-phase connection.

As well as the standard transformers shown in the following table, we can also supply special versions, further details on request.

In accordance with the data given, the transformers can also be ordered by the user from a local manufacturer in order to save the comparatively high costs of post and packaging.

The transformers have separate primary and secondary windings. Autotransformers are not permissible.

9.3.2 Connections

The connections are clearly labeled on the terminals of the transformers.

Transformer		038100050Z	038100070Z	038100090Z	038100130Z		
Mains conne	ection (primary)		3 × 400 V				
Output volta	ıge		3 × 230 V				
Load factor	(power supply dimensioning)	15 25 40 80					
Rated output	Jt	1.2 kVA	2.5 kVA	3.5 kVA	7.5 kVA		
Primary-side	e back-up fuses	3 × 4 A T	3 × 6 A T	3 × 10 A T	3 × 16 A T		
Wiring	Recomm. cross-section	1.5 mm ²	1.5 mm ²	2.5 mm ²	4.0 mm ²		
	Minimum cross-section	0.75 mm ²	1.0 mm ²	1.5 mm ²	2.5 mm ²		
Dimensions (L × W × H in mm)		200 × 123 × 175	240 × 155 × 205	260 × 150 × 225	340 × 194 × 284		
Weight		19 kg	20 kg	44 kg	73 kg		

9.3.3 Technical specifications of the mains transformers

The following applies for combinations of several amplifiers with one transformer:

• The load factors of the amplifiers working simultaneously at full load are added, and the proportionally reduced load factors of the amplifiers working under part load are added. The total load factor thus calculated determines the transformer required.

10 Accessories

10.1 Available accessories and order numbers

Accessories	Order number
Connector set for KSV 6HE servo amplifier without encoder module option	099066010Z
Connector set for KSV 6HE servo amplifier with encoder module option	099066020Z
Motor connection cable, 4 cores, cross-section 1.5 mm ² , shield	535246Z
Motor connection cable, 4 cores, cross-section 2.5 mm ² , shield	535264Z
Resolver/Encoder connection cable, 8 cores, twisted pair, shield	535245Z
Motor choke with terminals and enclosure, for medium-length cables (up to 25 m)	038096010Z
Motor choke with terminals and enclosure, for longer cables (more than 25 m)	038097010Z

10.2 Description of accessories

10.2.1 Connector sets 099066010Z and 099066020Z

The amplifiers are supplied without mating connectors. The connector set comprises all necessary connectors:

- The connector set 099066010Z includes connectors for the version without encoder module (G0)
 - two SUB-D connectors with screwable housings and
 - one 7-pole and one 10-pole Combicon female connector.
- The connector set 099066020Z for the version with one of the encoder module options (G1 to G4) includes
 - one additional SUB-D connector with screwable housing.

The housings of the connectors are metallized and therefore shielded.

10.2.2 Motor connection cables 535246...Z and 535264...Z

The motor must be connected with a shielded cable. Characteristics of our motor connection cable:

- 4-core, shielded,
- cross section 1.5 mm² in the case of 535246...Z,
- cross section 2.5 mm² in the case of 535264...Z,
- suitable as trailing cable.

Choose the appropriate cable according to the required cross sections given in table "Technical specifications" on page 15. Technical specifications:

Motor connection cable	535246Z	535264Z	
Cable code	KWLifPETPC11Y JZ 4 × 1.5 mm ²	KWLifPETPC11Y JZ 4 × 2.5 mm ²	
Single core	1.5 mm² Cu litz bare, 192 × 0.1 mm	2.5 mm ² Cu litz bare, 320 × 0.1 mm	
Structure	4 cores stranded with o	ptimized length of twist	
Color coding	1 × green/yellow PE cond., 3 × black Z1 – Z3		
Total shield	Cu braiding, tin-coated 0.1 mm single wire diameter		
Total sheath	Polyurethane orange RAL 2003		
Diameter	7.8 ± 0.3 mm 9.7 ± 0.3 mm		
Bending radius for single bend, fixed installation	min. 65 mm min. 80 mm		
Rolling radius for continuous altern. bending, trailing use	min. 95 mm min. 120 mr		
Operating temperature	-50 to +90 °C (fixed installation) -30 to +80 °C (trailing use)		

10.2.3 Resolver/Encoder connection cable 535245...Z

The resolver/encoder connection cable is suitable for connecting the position sensor (resolver) as well as for connecting a positioning controller to the "sensor signals" output. Characteristics of our resolver/encoder connection cable 535245...Z:

- 8-core, shielded,
- twisted pair,
- suitable as trailing cable.

Technical specifications:

Res./Enc. connection cable	535245Z	
Cable code	KWLiFPETP(C)11YP OB 2 × 4 × 0.25 mm ²	
Single core	0.25 mm ² C -Litz bare, 19 × 0.127 mm	
Structure	4 pairs stranded with short length of twist	
Color coding	white/brown, green/yellow, grey/pink, blue/red	
Total shield	Cu mixed braiding, tin-coated, coverage 85%	
Total sheath	Polyurethane orange RAL 2003	
Diameter	6.4 ± 0.3 mm	
Bending radius for single bend, fixed installation	min. 80 mm	
Rolling radius for continuous altern. bending, trailing use	min. 150 mm	
Operating temperature	−40 bis +80 °C (fixed installation) −30 bis +70 °C (trailing use)	

10.2.4 Motor chokes 038096010Z and 038097010Z

Longer motor cables can overload the device and cause unacceptably high interference emission.

• For this reason, a motor choke must be fitted in the motor cable if the cable is longer than 7 m. For the correct choke please refer to the following table.

Both motor chokes are supplied in a steel plate housing ready for installation and connection. They are supplied with terminals and with cable clamps.

Figure 8 shows the mounting dimensions, the connection (please note the connection of the shield) and the marking of the terminals.

Caution

During operation under full load, the chokes can reach a temperature of over 100 °C. To ensure adequate heat dissipation, they must be screwed to a sufficiently large metal plate.

Technical specifications:

Motor choke	038096010Z	038097010Z
Permissible current	10 A	12 A
Inductance	3 × 0.8 mH	3 × 0.9 mH
For cable lengths when using KSV 6HE amplifiers	7 to 25 m	more than 25 m
Internal design	partially compensated triple choke	3 single chokes

Dimensions	Distance X	Housing height	
	90 mm	40 mm	
038097010Z	130 mm	45 mm	

Internal choke	Input	Output
1	U	Х
2	V	Y
3	W	Z

Fig. 8: Motor chokes

Chapter 4: Notes for specialists

11 Modifications to the servo amplifier

This section describes how the factory settings can be changed.

If you have changed the factory settings, it is essential that you should document the new settings in the table in section 12, page 82.

11.1 Modifying the controller circuitry

The controller circuit is defined by the name of the customer module, see type code, section 3.1, page 15. In some cases it is implemented on the customer module itself, in some cases through jumpers on the board. Electronics specialists can change the controller circuitry on site if required.

11.1.1 Speed control range

The speed control range is determined using the option K (K1, K2, K4, K5, KA, and KB). However, it is not implemented on the customer module, but by means of jumpers on the board. Modify by relocating the jumpers on the X 14 field, labeled "DREHZAHL" (= speed). 2 jumpers must always be placed at the same time. The positions are marked [1] and [2]. Figure 9 shows the location of the jumpers and the locating options.

The speed control range is factory-set for the used motor (if known), see type code (page 15), Kx option. To obtain good speed resolution, the lowest possible range for the application should be selected.

Relocating the jumpers changes the offset of the amplifier.

- If no add-on module is fitted, the offset can be reset using the offset trimmer on the front panel.
- If the amplifier is fitted with an add-on module, the offset must be readjusted in the manner described below. To do this, the offset trimmer on the front panel is required, as well as the potentiometer inside the device which is marked "n-OFFSET". It is located at the very top behind the front panel, see fig. 9.

There are two options for offset adjustment:

- With measuring device:
 - Switch off the controller enable,

- measure the voltage at the analog output "Speed monitor" and then make this voltage zero using the potentiometer "n-OFF-SET".
- Without measuring device:
 - Make the setpoint zero;
 - before changing the jumpers adjust the offset with the trim potentiometer on the front panel so that the motor comes to a standstill as good as possible.
 - Switch off the mains,
 - only then change the jumpers,
 - switch on again.
 - Then adjust the offset again, but this time using the potentiometer "n-OFFSET" inside the device.

Note: If this adjustment is not carried out in this way when the Z module is in position, the tacho window could not be switched on when the motor is at a standstill, and therefore the amplifier would not be enabled at a standstill.

11.1.2 Number of motor pole pairs

The adaptation of the number of motor pole pairs is determined by the option K (K1, K2, K3, K4, K5, K6, KA, and KB). It is realized by jumpers on the board. Modify by relocating the jumpers on the field X 13.

There are 4 positions for each jumper. The positions are labeled 2PP, 4PP, Sel1 and Sel2. Figure 9 shows the location of the jumpers and the locating options.

- Jumper in position 2PP: motor with 2 pole pairs,
- no jumper plugged in: motor with 3 pole pairs,
- jumper in position 4PP: motor with 4 pole pairs,
- jumper in position Sel1 or Sel2: special motor, further details on request.

The number of pole pairs is factory-set for the used motor, see type code (page 15), Kx option.

Fig. 9: Location of the jumpers on the board

11.1.3 Current control instead of speed control

Whether the servo amplifier is set for speed control or for current control is implemented on the customer module (module K3 for 2-pole-pair or K6 for 3-pole-pair motors).

To switch the servo amplifier from speed control (as supplied) to current control,

- insert a jumper in the "Moment" (=torque) position.
 - Figure 10 shows the location of the jumper.

The following then applies:

• 10 V setpoint corresponds to the peak current set at the "Current" rotary switch S1.

Fig. 10: Location of the jumpers on the customer module

Current control is not provided with the customer module belonging to the Z4 add-on module.

11.1.4 Changing the direction of rotation

The assignment of the direction of rotation to the polarity of the setpoints is described in section 4.2.2 (page 23). If it is to be changed so that it corresponds to the direction of rotation assignment of the Georgii Kobold 3 units high servo amplifiers,

 then relocate the jumpers on the customer module from position "6 HE" to position "3 HE".

11.2 Modifications to the feedback

As standard, the speed control is realized as PI-controller.

11.2.1 Reset time

The customer module has two additional capacitors with which the reset time of the speed controller can be increased. These capacitors can be connected to the existing capacitor by means of the jumpers t1 and t2.

Figure 10 shows the location of the jumpers. The following applies:

Solder bridge	Reset time
none *	3.3 ms
t1	6.6 ms
t2	10 ms
t1 + t2	14 ms

* standard factory setting

With the Z4 add-on module, the I time constant can be adjusted on the add-on module itself.

11.2.2 D circuit

If a D circuitry is to be connected to the speed feedback (PID controller), the components C 2 and R 10 must be installed on the customer module. Their locations are printed on the board (see fig. 10). The values must be determined by experiment. 100 nF and 100 k Ω can be regarded as guide values.

D circuitry connection is not provided with the customer module belonging to the Z4 add-on module.

11.3 Modifications to the Z1, Z2, and Z4 add-on modules

11.3.1 Location of the solder bridges

The following figures show the position of the solder bridges on the Z1, Z2, and Z4 add-on modules.

Fig. 11: Solder bridges on the Z1 module

Fig. 12: Solder bridges on the Z2 module

Fig. 13: Solder bridges on the Z4 module

11.3.2 Former versions of modules Z1 and Z2

Check

The following description of the Z1 and Z2 add-on modules applies to the devices delivered now. Former versions of the add-on modules have other jumpers or fewer functions. They have other layouts as the modules shown in fig. 11 and 12. If your amplifier is fitted with other modules, please contact us so that we can send you matching documentation.

11.3.3 "Power circuit ready" signal instead of "Motor standstill" signal

If one of the Z1 or Z2 add-on modules is fitted, the switching output provides the signal "Motor standstill" (factory setting).

Modify by setting a solder bridge on the add-on module,

- without solder bridge: "Motor standstill" signal,
- with solder bridge: "Power circuit ready" signal.

The position of the solder bridge is labeled (see fig. 11 or 12)

- "Signal: End. Bereit" on the Z1 module,
- "Be" on the Z2 module.

The Z4 add-on module provides the "Power circuit ready" signal.

11.3.4 Switching off the peak current rise

To switch off the peak current rise,

• set a solder bridge on the add-on module.

The position of the solder bridge is labeled (see fig. 11, 12, or 13)

- "Impulsstrom: Aus" on the Z1 and Z4 modules,
- "I_D" on the Z2 module.

11.3.5 Switching off active braking at controller disable

If the motor should not be braked actively by reverse current when controller enable is suspended (that is, at controller disable),

• set a solder bridge on the add-on module.

The position of the solder bridge is labeled (see fig. 11, 12, or 13)

- "aktive Bremse: Aus" on the Z1 and Z4 modules,
- "BR1" on the Z2 module.

11.3.6 Activating the ramp function

The ramp function is disabled as delivered. It is activated

• by setting a solder bridge on the add-on module.

The position of the solder bridge is labeled (see fig. 11 or 12)

- "Sollwert-Rampe: Ein" on the Z1 module,
- "Ein" on the Z2 module.

The Z4 add-on module has no ramp function.

11.3.7 Adjusting and limiting the I component of the speed controller

Using the t0, t1, and t2 solder bridges, the I time constant of the speed controller I component can be adjusted on the Z4 add-on module.

Solder bridge	I time constant	
tO	no I component	
none	25 ms	
t1	2.5 ms	
t2	1.25 ms	
t1 + t2	0.8 ms	
Potentiometer *	1.25 25 ms	

Figure 13 shows the location of the solder bridges. The following applies:

* only on special module for commissioning aid

Using the lim1 to lim3 solder bridges, the I component can be limited on the Z4 add-on module. The limitation threshold is given in percent of the maximum permissible pulse current. The following applies:

Solder bridge	Limitation threshold
none	100%
lim1	10%
lim2	20%
lim3	30%
Potentiometer *	0 55%

* only on special module for commissioning aid

11.4 Modifications to the polarity module

11.4.1 "Ready" signal instead of "Fault" signal

The P1 polarity module supplies, among other things, the "Fault" signal, while the P2 polarity module supplies the "Ready" signal.

To convert from P1 to P2

• connect the two soldering areas labeled "Be" on the polarity module, see fig. 14.

Fig. 14: Solder bridges on the P1 and P2 modules

12 Documentation of the settings

Тір	Copy t informa	this page ation and	e and e d all of t	enter ir he setti	nto the	follo	owing odifica	table: tions	s the you h	name ave ca	plate arried
	require these t	a simila ables.	arly con	figured	or mo	odifie	d devi	ce, se	end us	s a co	py of
Nameplate inform	nation::	In cas	se of mu	ultiple d	evices	: Dev	vice No	Э.			
						S	SN				
Current setting, th	he switch s	etting is	marked	d with a	cross						
0 1 2	3 4	5	6 7	8	9	Α	В	С	D	E	F
Encoder pulse se	etting, the s	witch se	tting is	markec	l with a	a cros	SS:				
0 1 2	3 4	5	6 7	8	9	Α	В	С	D	E	F
Speed control rar 3,500 min ⁻¹ (c	nge, the rar	nge set i 7,000 i	s marke min ⁻¹ ([1])	ed with	a cros 10,50	<mark>S:</mark> 0 min⁻	¹ ([2])	14	l,000 m		+[2])
No. of polo pairs	cot numbe	or of pole		c mork	od with		<u></u>				1,
2 pole pairs (2	PP)	3 pole pa	irs (open)		4 pole j	pairs (4PP)				
Current control in Jumpe Standard directio	stead of sp er in position " n of rotatio 3 HE	beed cor torque" ("N n, set dir	ntrol, ma Moment") rection 6 HE	arked w] of rotat]	rith a c ion is r	ross marke	if jump ed with	ber is n a cr	set: oss:		
Reset time, the s	et time con	stant is	marked	with a	cross:						
3.3 ms (c	open)	6	.6 ms (t1)			10 m	ns (t2)		14	4 ms (t1	l+t2)
Modifications to Z1 / Z2 add-on module, closed solder bridges marked with a cross: Power circuit ready ("Signal: End. Bereit" / "Be") Peak current off ("Impulsetrom: Aus" / "In")											
Active braking off ("aktive Bremse: Aus" / "BR1") Ramp function on ("Sollwer-Rrampe: Ein" / "Ein")											
Modifications to 2	Z4 add-on r	module:									
Feedback time co	onstant, the	e set time	e const	ant is m	narked	with	a cros	s:			
- (t0)	25 m	ns (open)		2.5 ms	(t1)		1.25 ms	(t2)	0.	.8 ms (t	1+t2)
Limitation of the speed controller I component, the set limitation is marked with a cross:100% (open)10% (lim1)20% (lim2)30% (lim3)											
Modification to po	blarity modu	ule, marl	ked with	n a cros	s whe	n sol	der bri	dge o	closec	l:	

Appendix

Appendix A EC Declaration of Conformity

Form Certificate of Conformity

Total Quality

Certificate of Conformity in the sense of EC-Directive

Here with we confirm that the products

Product	GEORGII KOBOLD

Type	KSV 6HE.	compact design
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Series KSV Servo Amplifier

correspond to the EC directives, standards and regulations below and are designed for installation in a machine. According to EC directive "Machines", commissioning is prohibited until it has been ascertained that the machine in which the above product is installed meets the provisions of the EC directive.

The requirements of the EC directives, standards and regulations will only be met if the directions for installation and cabling given in the operating instructions are observed.

Operating instructions 22 10 58E

The products are developed, constructed and produced in accordance to EC-Directive: EMC-directive 89/336/EWG, amended by 91/263/EWG, 92/31/EWG, 93/68/EWG Low voltage directive 73/23 EWG, amended by 93/68/EWG of exclusive responsibility of

 Postfach
 10 01 54
 D - 70745
 Leinfelden-Echterdingen

 Fasanenweg 6 - 8
 D - 70771
 Leinfelden-Echterdingen

 Telefon
 0711 / 7 59 03 - 0
 Fax
 0711 / 7 59 03 53

head of quality department

technical director

The signers are:

Schilhab Schramm

The following harmonised Standards are used:

EN 55011: 1991, class A and B (DIN VDE 0875, part 11)
DIN EN 50082-1: 1994
DIN EN 50082-2: 1995
DIN (pr) EN 50178: 1994

A technical documentation is completely available.

An operation instruction is available.

 X
 in the original version

 in the native language of the user.....

DokNr.:	Ausgabestand	erstellt / geändert: Schilhab	freigegeben / geprüft von: Schramm	Seite
10.4.31.	4	Datum / Signum / D. M.L.	Datum / Signum 18. Januar 2000	1 von 1

Appendix B Terms of warranty

warrants that the device is free of material and production defects. In quality assurance, measured values are recorded in the final inspection and testing.

The warranty period begins with delivery. It lasts for 12 months.

Delivery is based on the "General Terms of Delivery for Products and Services of the Electrical Industry" (green terms of ZVEI, German electrical and electronic manufacturers' association). In the event of a defect, or in case of absence of a guaranteed property, the device is to be returned. It is repaired in the works of the manufacturer free of charge, or replaced, at our discretion.

No other claims for damage which has not occurred in our device can be accepted. No claims for indirect damage resulting from a malfunction of or defect in our device may be put forward.

Appendix C Table of faults

If the drive does not work as desired, the following table of faults can help you to detect and eliminate the cause of the fault.

Observation	Possible Cause	Remedy
No LED lights up	No operating voltage for amplifier	Check input voltage
Green "Ready" LED flashes	Controller enable or limit switch open	Check cables, connections, limit swit- ches
Red "Fault" LED lights up and green "Ready" LED flashes	No supply voltage (this display only in case of option E1)	Switch on operating voltage, check emergency stop circuit
	Operating voltage too low	Measure operating voltage, must be >160 V
	With option E1 only: External control circuit supply voltage too low, or has dips from poor- ly filtered rectification	Measure voltage, must be >19 V, check for dips below 19 V
	Faulty auxiliary voltage	Measure auxiliary voltage at connector for control signals (+15 V and –15 V, ±10%)
	Short circuit or earth fault in motor cables or in motor	Check wiring and motor for short circuit and earth fault
	Customer module missing or incorrectly in- serted	Customer module forgotten or incor- rectly inserted after amplifier replace- ment
	Blocking protection device triggered	Electrical fault: motor or resolver ca- bles transposed,
		Mechanical fault: mechanism jammed or faulty
	Operating voltage increases excessively due to fault in shunt circuit	Check shunt circuit: shunt resistor missing or defective, many axes brak- ing at the same time

Observation	Possible Cause	Remedy
Red and green LEDs flash alternately (when device is cold or at operating temperature)	Sensor not connected, one or more leads interrupted, one or more leads short-circuited	Check sensor wiring. This fault can be reset only by switch- ing the operating voltage off and on again (with E1 of the external 24 V supply).
Red and green LEDs flash alternately after some period of operation. After some time the display changes to the following condition (see pert row)	Amplifier has switched off due to overtemperature of its heat sink (or due to motor overheating)	Amplifier (or motor) cooling inade- quate, temperature sensor has not yet switched back, fault reset not possible now
the following condition (see next fow)	Current limit set too high	Set to the current given for the motor
Red LED lights up continuously, green LED flashes		Amplifier (motor) has cooled down, temperature sensor has switched back, fault can now be reset
Yellow "Overload" LED lights up	Motor is overloaded or blocked	Check mechanical system
	Current limit set too low	Compare nominal motor data with set- ting
	Motor is not connected or a motor lead is interrupted	Check motor wiring
Motor is at a standstill with power, drifts slowly but cannot be controlled	Setpoint missing, setpoint lead interrupted or short-circuited	Check setpoint lead
Motor runs slowly at setpoint zero	Offset adjustment incorrect	Adjust offset potentiometer
Disturbing noise when motor is run- ning(humming, whistling, chirping)	One setpoint lead is open, shield is not cor- rect, motor is not earthed, transformer neutral point is not earthed	Check setpoint lead: It must be con- nected on one side to setpoint source zero volts. Check shield, check zero connection
Motor runs in the wrong direction	Setpoint inputs transposed	Transpose E+ and E– or set jumper on customer module
Motor runs too slowly or too fast at given setpoint	Speed standardization incorrect	Set to desired speed using "Speed" potentiometer, adjust speed control range if necessary (section 11.1.1)
Motor runs "rough" or "soft" after speed adjustment at speed potentiometer	Speed adjustment also influences feedback setting	Adjust feedback
Motor runs roughly or vibrates	Feedback too "hard"	Turn "Feedback" potentiometer to the left until motor runs smoothly
Motor shaft can be moved out of posi- tion by hand at standstill	Feedback too "soft"	Turn "Feedback" potentiometer to the right until motor runs roughly (vibrates), then to the left until motor runs smoothly
Motor begins to turn slowly at setpoint zero with increasing load	Zero loop, e.g. between amplifier zero and control zero	Use differential input, see section 4.4.10, page 42

Supplement for KSV 6HE with F1 option "Holding control loop"

Observation	Possible cause	Remedy
Motor is at a standstill with power, with- out drift, cannot be regulated	Holding control loop accidentally activated	Check "Hold" signal connection
Motor shaft can be moved by hand at standstill	If holding control loop is activated: Holding control loop too "soft"	Adjust "Hold" potentiometer